safeCAD-DJ

GERMAN-JAPANESE SYMPOSIUM ON SAFETY ASSURANCE FOR CONNECTED AND AUTOMATED DRIVING

June 1st - 3rd 2022

Organizers:

Thuringian Centre of Innovation for Mobility at Technische Universität Ilmenau, German Aerospace Centre (DLR)

PARTNER PROJECT OF THE **DIVP** PROJECT

Event flyer

How to find our research projects

<u>VIVID</u>

DIVP

PEGASUS Family

VV Methods

We gratefully acknowledge funding in the framework of the joint industrial-academic projects VIVID (BMBF) and VV-Methods (BMWK) and additional sponsoring from ADC Automotive Distance Control Systems, DLR, and TU Ilmenau.

Imprint / Copyright: Thuringian Centre of Innovation in Mobility (ThIMo) at the Technische Universität Ilmenau Ehrenbergstraße 15, 98693 Ilmenau

Authors: Prof. Dr. M. Hein, A. Schwind

German Aerospace Centre (DLR) Institute for Transportation Systems Lilienthalplatz 7, 38108 Braunschweig

Authors: Dr. H. Mosebach, Prof. Dr. F. Köster

SET Level

Photographs: © ResearchGate (Profile photos), © A. Khakimov I TU Ilmenau (Event photos)

Table of Contents

Programme at a glance4
Keynote 1: Virtual validation platform towards AD-safety assurance – Japanese research activities at JAMA, SAKURA & DIVP
Keynote 2: VV Methods – From assurance framework to data flow – Results from the German safety assurance project VV Methods
Keynote 3: Open Loop Validation with Artificial Raw Data Injection – a VIVALDI Status Report
Keynote 4: The SET Level simulation toolchain and open framework – Results from the German safety assurance project SET Level
Selected VIVID results: German R&D project9
Selected VIVID results: Japanese R&D project
Global standardization and harmonization11
Keynote 5: Virtual validation for ADAS and AD systems12
Keynote 6: Environmental modelling – a foundation for sensor simulation
VIVID joint topical task teams
Keynote 7: The role of AI and data qualification in safety assurance
Panel discussion: Change of paradigm – From product validation to data-driven and AI-enhanced process validation
Impressions from <i>safeCAD-DJ</i> 2022

Programme at a glance

Day 1

- Opening of safeCAD-DJ
- Keynote contributions from large-scale R&D projects
- Welcome reception

Day 2

- · Half-time presentations from VIVID, standardisation topics
- · Keynotes and breakout sessions
- Networking dinner

Day 3

· Future research and funding perspectives

Keynote 1:

Virtual validation platform towards AD-safety assurance – Japanese research activities at JAMA, SAKURA & DIVP

Speaker:

Prof. Hideo Inoue, Kanagawa Institute of Technology, Japan

Conclusions

Safety Evaluation of Automated Driving Systems, JAMA

The safety of automated and connected driving cannot be ensured only by endurance tests with longdistance driving but also a definition the scope of validation and the demonstration between virtual and real test environments.

The scenario-based approach describes a method for safety evaluation. The three scenario steps, functional \rightarrow logical \rightarrow concrete, form a comprehensive structure for safety coming from the physical of automated principles driving systems targeting highways. In Japan, industry, government, and academia are collaborating on strategic activities to realize safety evaluation for automated driving.

Driving Intelligence Validation Platform for Automated Driving Safety Assurance, DIVP

Highly consistent sensor modelling is a key enabler for virtual validation of AD/ADAS safety assurance. DIVP started as a collaborative consortium between sensor manufacturers, software companies,

universities and other parties, by connecting and taking advantage of expertise twelve the of the institutions. The project defines the interface specifications for a safety assurance platform that combines an automated driving control model with a set of models that include the driving environment, spatial propagation, and sensors.

Keynote 2:

VV Methods – From assurance framework to data flow – Results from the German safety assurance project VV Methods

Speaker: Roland Galbas, Robert Bosch GmbH, Germany

Conclusions

The PEGASUS project family, consisting of the *PEGASUS*, *VV Methods* (VVM), and *SET Level* research projects, focuses on development and testing of methods and tools for AD systems on highways and in urban environments.

The main goals of VVM are: systematic control of test space, industrial interfaces, shift to simulation, and argumentation. For this, VVM has chosen an approach which follows a systematic argumentation of coverage.

The assurance framework of VVM which defines synchronisation interface between the development/operation of assurance argumentation, design, and V&V.

This assurance framework also corresponds to the data-driven engineering (DDE) process of the Al industry.

Keynote 3:

Open Loop Validation with Artificial Raw Data Injection – a VIVALDI Status Report

Speaker:

Hasan Iqbal, ADC Automotive Distance Control Systems, Germany

Conclusions

The current ecosystem of the Continental engineering development focuses more and more on virtual validation of AD/ADAS sensor components. Simulation becomes a tool for EuNCAP 2025 assessment, i.e., virtual testing >75%, vehicle test <25%.

Continental hat put a lot of effort into the development of a radar ray tracer. In an iterative process, smart sampling aspects and realistic beam patterns were investigated and optimized. The validation using an Euro-NCAP scenario showed promising results and could also be quantified with suitable KPIs.

By initial benchmark tests of the ray tracing tool, synthetic aperture radar (SAR) applications were generated virtually to examine the performance of the precise phase information of targets.

Keynote 4:

The SET Level simulation toolchain and open framework – Results from the German safety assurance project SET Level

Speaker: Arun Das, BMW, Germany

Conclusions

As a part of the PEGASUS project family, the SETLevel project (Simulation-based Engineering and Testing of Automated Driving) focuses on the development, testing methods and tools for AD systems on highways and in urban environments. The project consortium includes OEM / Tier-1 companies, IT vendors and as well as research institutions.

SETLevel provides an environment for simulation-based systems exploration, understanding, as well as verification & validation as a service. It creates a platform with highly generic compontents, i.e., open, flexible, and extendable.

The project works on a "Credible Simulation Process" to develop and release new simulation methods. Following this structured process hierarchy, the proof and documentation of the quality for a

decision based on a simulation result can be clearly evaluated.

As a generic open analysis and testing architecture, the SETLevel methodology defines a logical structure for simulation toolchains, builds a commong ground for tooling solutions, allows a wide range of engineering tasks, and, it enables a modular composition of tools.

Selected VIVID results: German R&D project

Modelling the scattering centres of traffic participants based on RCS measurements in a virtual validation tool chain

- Backscattering behaviour of vulnerable road users
- High-resolution monostatic RCS measurements
- Doppler measurements of human motion
- Implementing the extracted radar models in scenario simulation environment

Installed performance testing of automotive radar in virtual environment

- Over-the-air/vehicle-in-the-loop implementation – virtual drive test in reality
- Scenario-based radar testing: Model → Stimulus → Sensor
- RCS maps to virtual environment
- Comparison between real and virtual test drives

Virtual testing of automotive camera and lidar

- Lidar sensor validation in the CPLA scenario
- Tool chain for lidar FMU model validation using co-simulation approach
- Comparison between real and simulated lidar data
- Lidar sensor model performance highly depends on environmental modelling

Selected VIVID results: Japanese R&D project

DIVP overview

Measuring based modeling framework, DIVP® has developed Assessment scenario packages as Virtual-PG'1 & sensing weakness scenario packages in Odaiba as Virtual-CG'2

- Modelling of the recognition environment outside the vehicle as an out-car model
- Conventional model-based development is characterized by models inside the vehicle as an in-car model
- Space design model generator creates and manages scenarios for DIVP simulators by placing vehicles and targets in virtual space environments

DIVP scope:

- Sensing weakness data
- Platform implementation
- Study reasonable
- semiconductor specificationDIVP objectives:
 - Open standard interface
 - Reference platform with
 - reasonable verification
 - Environmental and sensor model-based approach

DIVP service

- V-Drive Technologies: Vehicle/(Autonomous) Drive, Virtual – Validation – Verification
- Roadmap:
 - \rightarrow Fundamental research
 - \rightarrow Commercialization
 - → Standardization
- Business model: ecosystem based on automation tools, sensor and environmental models, measured data

Global standardization and harmonization

Standardized technical specifications of ASAM as endorser for deployment of automated driving systems

- ASAM OpenX test specification study groups about analysis and harmonization of automotive testing techniques and standards
 Main outputs:
- \sim Rueprint to meet
 - Blueprint to meet challenges of testing
 - o Holistic best practice
 - Possible basis for homologation of automated driving functions and software-defined vehicles

- Recommendations for a new standard at ASAM
 - Multiple test methods require a flexible approach to the interaction between scenarios and testing
 - o Standardized interface between test cases, scenarios, and ODD definition
 - $\circ~$ Test data management as basis for release and homologation
 - o Proposals for global alignment

Advancing on the development of sustainable and standardized ecosystems for autonomous driving safety assurance in Japan

- AD safety cannot be ensured with long-distance endurance driving tests alone
 - Challenge 1: Safety validation scope
 - Challenge 2: Virtual platform consistent with reality
- Leading role of Germany and Japan on safety standardization
 - ISO 34502 truly collaborative leading effort → expected final release in Oct. 2022
 - Pro-active in other safety related activities (e.g., SOTIF)

Keynote 5: Virtual validation for ADAS and AD systems

Speaker: Dr. Tobias Düser, AVL, Germany

Conclusions

With the introduction of automated driving functions, the market is now facing new challenges in the further development: Validation of AD systems and later, credibility of validation methods.

The functionality of autonomous vehicles might need to be limited to fit the constraints of feasible

validation techniques. Removing those constraints will require advances in areas such as characterizing the coverage of machine learning training data compared the expected to operational environment, gaining confidence in safety requirements regarding exceptional driving conditions, and being able to validate the independence of failures irredundant inductive-based systems.

The main challenges in validation of

automated driving can be described by two comparison questions: "What to test?" $\leftarrow \rightarrow$ "How to test?". The trade-off between the validation effort and the effort for determining credibility including their correlation has to be handled.

- The virtual testing in AD/ADAS means setting up a virtual vehicle with different components out of different domains in different tools.
- Defined model fidelity levels (also for Sensor and environmental models) will help to setup the virtual testing toolchain and to assess it.

Challenges in Validating Automated Driving Validation Effort vs. Effort for Determining Credibility

Keynote 6: Environmental modelling – a foundation for sensor simulation

Speaker:

Yannik Cichy, IPG Automotive, Germany

Conclusions

In the VIVID project, IPG Automotive leads the work packages about the implementation of simple and complex scenarios used for the virtual validation of the sensor models. For the better feasibility, the scenarios are decomposed into different layers, which are based on the six-layer-model of the PEGASUS project family.

Based on measurements with a test vehicle equipped with several sensors, recorded DGPS trajectory data and object lists from the sensors are used for the scenario generation and data analysis. The co-simulation between the environmental model and the sensor model is based on open standards. The comparison of the measured sensor data with the simulated data by specific metrics completes the validation chain.

VIVID joint topical task teams

Overview

лттт	Торіс	• DIVP®: Hideo Inoue		VIVALDI: Matthias Hein	
1	Simulation and data interfaces Comparison of simulation tool chains	🐵 BIPROGY	Wataru Nakamura	AVL 35	David Nickel
2	Environmental data Modelling, geometries and materials	A=#7699598768	Atsushi Araki	<u> «Kit</u>	Mario Pauli
3.1	Camera Reference data, test methods and metrics	K 推動IU和大学 SONY	Shotaro Koyama Toshinobu Sugiyama	~	Stefan-Alexander Schneider
3.2	LIDAR Reference data and model metrics		Shotaro Koyama Masami Suzuki	English Sol	Thomas Zeh
3.3	Radar Validation, performance simulation, reference data	N HOULHAN	Shotaro Koyama Mine Seki	(intinental*	Hasan Iqbal
3.4	V&V testing framework Sensor testing and test metrics	▶ 被刑!正视大学	Shotaro Koyama	REMARK LAND	Matthias Hein
5	Scenario structuring Modularity, criticality, sensor-specific weaknesses	🍖 SOLIZE	Shinji Minami		Yannik Cichy
6	Simulation validation roadmap Joint test campaigns	▲ 检查》(正称大学	Shinnosuke Kawazoe	@ 112021	Ken Mori

- Common goals:
 - Exchangeability
 - Interoperability
 - Data-driven safety assurance
- Commonalities
 - o HD map and sensor raw data
 - Material and object data bases
 - Environmental and sensor modelling
- Complementarities
 - Sensor types and raw data
 - o Test methods

During the mid-term event of VIVID, the JT structure was reconsolidated as below.

	lopics
JT1	Tool chain
JT2	Scenario structuring & environmental data
JT3.1	Propagation and sensor modelling - Camera
JT3.2	Propagation and sensor modelling - Lidar
JT3.3	Propagation and sensor modelling - Radar
JT4	V&V test and simulation framework

Breakout session 1 – Scenarios

Breakout session 2 – Sensors

Breakout session 3 – Test and validation metrics

Keynote 7: The role of AI and data qualification in safety assurance

Speaker:

Prof. Frank Köster, German Aerospace Center (DLR), Germany

Conclusions

With the enormous complexity of advanced vehicles and automated systems in even more complex environments established methods reach their limits in generating safety evidences. Moreover, we can't expect that an automated vehicle will be designed, developed, tested, produced, quality assured, delivered, deployed, used, serviced and recycled in a straight-line process. Not just because of AI-based components there is a need to establish iterated Processes which are e.g. well known from the field of software engineering, like the DevOps approach (Dev = Development; Ops = Operations). Continuous improvement of products (e.g. AI-based products) is a concept that can be implemented on a DevOps environment. The typical DevOps-phases are data-centric and data-driven respectively. This is a perfect environment to apply AI-based tool for the automated data-processing and -analysis – e.g. with the aim to identify new test-cases, monitor AI-based functions in the field and retrain them on improved training data sets, derive models to support predictive maintenance functionalities etc.

The overall goal of an AI and datadriven engineering process methodology is the transfer of product development chains based on single fail/pass verification runs to integration continuous and assessment methodologies. The better we can automate this by AIbased engineering tools the more we can speak of a game changer in innovative product development.

- Virtual environments for V&V are essential in particular in terms of Simulation as a service
- The integrated use of different test facilities/environments is essential to gain a sufficient overall evidence: virtual environments, HiL/ViL, proving grounds, field tests etc.
- ➡ Focusing the product is not sufficient → the entire process-landscape, set of methods, tool chains and their interaction are important "go for DevOps!"
- Security must be guaranteed and trustworthiness is of high importance
- Trusted data spaces or data (and service) ecosystems has to be established for V&V linked or meshed with other data spaces
- Humans are a better decision maker when the goal structures must be adapted/adjusted (no strong AI available) adequate Human-in-the-Loop concepts need to be developed

Panel discussion: Change of paradigm – From product validation to data-driven and AI-enhanced process validation

Moderator: Prof. Frank Köster, German Aerospace Center, Germany

Panel list: Prof. Hideo Inoue, Kanagawa Institute of Technology, Japan Roland Galbas, Robert Bosch GmbH, Germany Hasan Iqbal, ADC Automotive Distance Control Systems, Germany Arun Das, BMW, Germany Dr. Tobias Düser, AVL, Germany Yannik Cichy, IPG Automotive, Germany

Communication technologies (in particular 5G and 6G) for cooperative automated driving and their relation to Al-based vehicle functions

Robust communication is an important foundation for intelligent AI-based cooperation (and collaboration) of automated systems and intelligent traffic infrastructures. Particularly, this helps to raise a vehicle's range of perception and also the quality of the perception. By this an improvement of safety can be assumed in many traffic situations. Accordingly, advances in single communication technologies as well as the integrated use of complementary communication technologies should be provided by future research initiatives. Furthermore, it is also important to mention, that communication technologies are the basis for a large-scale data collection in the mobility system, which enable the monitoring of AI-based products as well as the continuous product improvement.

Impact of AI-based functions on test procedures

In the context of perception (beside other application areas) it is commonly accepted, that AI-based function will play a major role in automated systems. We can't life without AI-based components in the context of advanced vehicles and automated systems. Because of that, we have to compensate some drawbacks of highly relevant AI-methods like artificial neural networks or deep learning approaches. In this context, the following research streams are essential:

- Accompanying safety layers from a systems perspective
- Architectures to integrate conventional algorithms with (updateable) AI-based components
- Hybrid AI-based solutions that integrate sub-symbolic and symbolic AImethods and -technologies respectively
- Improved test methodologies and tools for AI-based functions

Next steps towards safety assurance by virtual V&V

- Rational and integrated use of various tests and test equipment in the context of a substantial safety argumentation
- Certification of tool chains and test equipment
- Raise the proportion of virtual or simulation-based methods/tools and the level of evidence
- Establishment of digital twins across the overall automotive value chain
- Increase efficiency in testing.

Aspects about metrics to quantify the degree of realism and evidence

- Rational use of simulation tools and simulation approaches we need research on methodologies and not just a tool centric research (How to do things best should be in the focus?)
- S More accurate models don't always equal better for safety reasoning
- Mew scalable simulation approaches are urgently needed

Improvements for DevOps cycles for complex and AI-based systems

- Digital twins (as already mentioned above) will be of increasing relevance
- High degree of automation of processes (e.g. in virtual or simulation-based environments
- Scalability and maintenance of digital twins over the entire product lifetime is essential
- Standards (especially big pictures for the practical use of standards) are extremely important in order to be able to set up the urgently required tool chains
- Methods for the efficient execution of tests are also indispensable

Impressions from *safeCAD-DJ* 2022

Supported by:

Federal Ministry for Economic Affairs and Climate Action

on the basis of a decision by the German Bundestag

SPONSORED BY THE

Federal Ministry of Education and Research